Công thức Logarit

Học công thức bằng cách luyện tập thường xuyên nào

0%
95

Có 10 câu, trong thời gian 20 phút

Hết giờ! hệ thống tự nộp bài


Created by le chanduclechanduc

CÔNG THỨC LOGARIT MỨC ĐỘ 5-6

Luyện công thức Logarit mức độ cơ bản

Mời bạn điền tên để dễ ghi nhận nha.

1 / 10

1) (THPT Yên Phong Số 1 Bắc Ninh 2019) Cho hai số dương \(a,\,\,b\,\,\left( {a \ne 1} \right).\) Mệnh đề nào dưới đây SAI?

2 / 10

2) (Mã 101 - 2020 Lần 1) Với \(a,b\) là các số thực dương tùy ý và \(a \ne 1\), \({\log _{{a^5}}}b\) bằng:

3 / 10

3) (Đề Tham Khảo 2017) Cho \(a,\,\,b\) là các số thực dương thỏa mãn \(a \ne 1\), \(a \ne \sqrt b \) và \({\log _a}b = \sqrt 3 \). Tính \(P = {\log _{\frac{{\sqrt b }}{a}}}\sqrt {\frac{b}{a}} \).

4 / 10

4) (Mã 123 2017) Với \(a\), \(b\) là các số thực dương tùy ý và \(a\) khác \(1\), đặt \(P = {\log _a}{b^3} + {\log _{{a^2}}}{b^6}\). Mệnh đề nào dưới đây đúng?

5 / 10

5) (Đề Minh Họa 2020 Lần 1) Xét tất cả các số dương \(a\) và \(b\) thỏa mãn \({\log _2}a = {\log _8}(ab)\). Mệnh đề nào dưới đây đúng?

6 / 10

6) (THPT Cẩm Giàng 2 2019) Cho các số dương \(a\,,\,b\,,\,c\,,\,d\). Biểu thức \(S = \ln \frac{a}{b} + \ln \frac{b}{c} + \ln \frac{c}{d} + \ln \frac{d}{a}\) bằng

7 / 10

7) Cho \({\log _{700}}490 = a + \frac{b}{{c + \log 7}}\) với \(a,\,\,b,\,\,c\) là các số nguyên. Tính tổng \(T = a + b + c\).

8 / 10

8) Cho\(a,{\rm{ }}b\) là hai số thưc dương thỏa mãn \({a^2} + {b^2} = 14ab\). Khẳng định nào sau đây sai?

9 / 10

9) Cho \(x,y\) là các số thực dương tùy ý, đặt \({\log _3}x = a\), \({\log _3}y = b\). Chọn mệnh đề đúng.

10 / 10

10) (Sở Vĩnh Phúc 2019) Cho \(\alpha = {\log _a}x\), \(\beta = {\log _b}x\). Khi đó \({\log _{a{b^2}}}{x^2}\) bằng.

Your score is

The average score is 78%

0%

Share

Written by:

le chanduc

2 Posts

View All Posts
Follow Me :

Bạn đã đăng kí thành công, cảm ơn bạn nha

Có một chút lỗi, bạn vui lòng làm lại nha

EDUCATION will use the information you provide on this form to be in touch with you and to provide updates and marketing.