Giải một vài bài lượng giác

Đề bài số 1

\(sin{x} + \sqrt{2-sin^2x}=2+\sqrt{1+cos{4x}}\)

Lời giải

Bài này sau khi em làm một hồi mà suy nghĩ nát óc chưa ra, thấy có căn, rồi mấy cái số 2 lặp đi lặp lại nữa rất nghi ngờ nó là p.trình lượng giác không mẫu mực, đánh giá 2 vế để có dấu bằng xảy ra. Cụ thể thế này:

Dùng B.C.S ta có: VT= \( 1.sinx+1.\sqrt{2-sin^2x} \leq \sqrt{(1^2+1^2)(sin^2x+2-sin^2x)} = 2 \)

Trong khi VP = \(2+\sqrt{1+cos4x} \geq 2\)

nên phương trình chỉ xảy ra khi cả 2 cùng thỏa dấu bằng xảy ra, nghĩa là:

\(\left\{ \begin{array}{l}\sin x = \sqrt {2 – {{\sin }^2}x} \\1 + \cos 4x = 0\end{array} \right.\)

Từ đó ta giải được \(\left\{ \begin{array}{l}\sin x = 1 \\cos4x =-1\end{array} \right.\)

Tức là vô nghiệm


Giải bài tập đề cương thầy Đức, phần 1

\[\begin{array}{l}1.1){\cos ^2}x – 2\sin x + 2 = 0\\ \Leftrightarrow  – {\sin ^2}x – 2\sin x + 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 1(n)\\\sin x =  – 3(l)\end{array} \right.\\ \Leftrightarrow x = \frac{\pi }{2} + k2\pi (k \in \mathbb{Z})\end{array}\]

\[\begin{array}{l}1.2)4\cos \frac{{5x}}{2}\cos \frac{{3x}}{2} + 2(8\sin x – 1)\cos x = 5\\ \Leftrightarrow 2(\cos 4x + \cos x) + 2(8\sin x\cos x – \cos x) = 5\\ \Leftrightarrow \cos 4x + \cos x + 4\sin 2x – \cos x = \frac{5}{2}\\ \Leftrightarrow 1 – 2{\sin ^2}2x + 4\sin 2x = \frac{5}{2}\\ \Leftrightarrow  – 2{\sin ^2}2x + 4\sin 2x – \frac{3}{2} = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = \frac{3}{2}(l)\\\sin x = \frac{1}{2}(n)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.(k \in \mathbb{Z})\end{array}\]

\[\begin{array}{l}1.3)\cos 4x + 12{\sin ^2}x – 1 = 0\\ \Leftrightarrow 1 – 2{\sin ^2}2x + 12{\sin ^2}x – 1 = 0\\ \Leftrightarrow 6{\sin ^2}x – {\sin ^2}2x = 0\\ \Leftrightarrow 6{\sin ^2}x – 4{\sin ^2}x{\cos ^2}x = 0\\ \Leftrightarrow 2{\sin ^2}x(3 – 2{\cos ^2}x) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\{\cos ^2}x = \frac{3}{2}(l)\end{array} \right.\\ \Leftrightarrow x = k\pi (k \in \mathbb{Z})\end{array}\]

\[\begin{array}{l}1.4)\frac{{2({{\cos }^6}x + {{\sin }^6}x) – \sin x\cos x}}{{\sqrt 2  – 2\cos x}} = 0(1)\\DK:\sqrt 2  – 2\cos x \ne 0\\ \Leftrightarrow \cos x \ne \frac{{\sqrt 2 }}{2}\\ \Leftrightarrow x \ne  \pm \frac{\pi }{4} + k2\pi (k \in \mathbb{Z})\\(1) \Leftrightarrow 2 – \frac{3}{2}{\sin ^2}2x – \frac{1}{2}\sin 2x = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 1(n)\\\sin 2x = \frac{{ – 4}}{3}(l)\end{array} \right.\\ \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi \\ \Leftrightarrow x = \frac{\pi }{4} + k\pi (k \in Z)\\So {\rm{dk:}} \Leftrightarrow x = \frac{{5\pi }}{4} + k\pi (k \in Z)\end{array}\]

\[\begin{array}{l}1.5)4{\sin ^3}x + 4{\sin ^2}x + 3\sin 2x + 6\cos x = 0\\ \Leftrightarrow 4{\sin ^2}x(\sin x + 1) + 6\cos x(\sin x + 1) = 0\\ \Leftrightarrow (\sin x + 1)(4{\sin ^2}x + 6\cos x) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x =  – 1(1)\\4{\sin ^2}x + 6\cos x = 0(2)\end{array} \right.\\(1) \Leftrightarrow x = \frac{{ – \pi }}{2} + k2\pi (k \in Z)\\(2) \Leftrightarrow 4 – 4{\cos ^2}x + 6\cos x = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = 2(l)\\\cos x = \frac{{ – 1}}{2}(n)\end{array} \right.\\ \Leftrightarrow x =  \pm \frac{{2\pi }}{3} + k2\pi (k \in Z)\end{array}\]

\[\begin{array}{l}1.6)5\left( {\sin x + \frac{{\cos 3x + \sin 3x}}{{1 + 2\sin 2x}}} \right) = \cos 2x + 3(1)\\DK:1 + 2\sin 2x \ne 0\\ \Leftrightarrow \sin 2x \ne \frac{{ – 1}}{2}\\ \Leftrightarrow \left[ \begin{array}{l}x \ne \frac{{ – \pi }}{{12}} + k\pi \\x \ne \frac{{7\pi }}{{12}} + k\pi \end{array} \right.(k \in Z)\\(1) \Leftrightarrow 5(\sin x + 2\sin x\sin 2x + \cos 3x + \sin 3x) = (\cos 2x + 3)(1 + 2\sin 2x)\\ \Leftrightarrow 5(\sin x – \cos 3x + \cos x + \cos 3x + \sin 3x) = (\cos 2x + 3)(1 + 2\sin 2x)\\ \Leftrightarrow 5(\sin x + \sin 3x + \cos x) = (\cos 2x + 3)(1 + 2\sin 2x)\\ \Leftrightarrow 5(2\sin 2x\cos x + \cos x) = (\cos 2x + 3)(1 + 2\sin 2x)\\ \Leftrightarrow 5\cos x(2\sin 2x + 1) = (\cos 2x + 3)(1 + 2\sin 2x)\\ \Leftrightarrow 5\cos x = \cos 2x + 3\\ \Leftrightarrow 2{\cos ^2}x – 5\cos x + 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = 2(l)\\\cos x = \frac{1}{2}(n)\end{array} \right.\\ \Leftrightarrow x =  \pm \frac{\pi }{3} + k2\pi (k \in Z)\end{array}\]

\[\begin{array}{l}1.7)\cot x – \tan x + 4\sin 2x = \frac{2}{{\sin 2x}}(1)\\DK:\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne k\pi \\x \ne \frac{\pi }{2} + k\pi \end{array} \right.(k \in Z)\\(1) \Leftrightarrow 2\frac{{\cos 2x}}{{\sin 2x}} + 4\sin 2x = \frac{2}{{\sin 2x}}\\ \Leftrightarrow \cos 2x + 2{\sin ^2}2x = 1\\ \Leftrightarrow \cos 2x + 1 – 2{\cos ^2}2x = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = 1\\\cos 2x = \frac{{ – 1}}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x =  \pm \frac{\pi }{3} + k\pi \end{array} \right.(k \in Z)\\So dk: \Leftrightarrow x =  \pm \frac{\pi }{3} + k\pi (k \in \mathbb{Z})\end{array}\]

\[\begin{array}{l}1.8)5\sin x – 2 = 3(1 – \sin x){\tan ^2}x(1)\\DK:\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi (k \in Z)\\(1) \Leftrightarrow 5\sin x – 2 = 3(1 – \sin x)\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}}\\ \Leftrightarrow 5\sin x – 2 = 3(1 – \sin x)\frac{{{{\sin }^2}x}}{{(1 + \sin x)(1 – \sin x)}}\\ \Leftrightarrow 5\sin x – 2 = \frac{{3{{\sin }^2}x}}{{1 + \sin x}}\\ \Leftrightarrow 5{\sin ^2}x + 3\sin x – 2 = 3{\sin ^2}x\\ \Leftrightarrow 2{\sin ^2}x + 3\sin x – 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x =  – 2(l)\\\sin x = \frac{1}{2}(n)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.(k \in Z)\\So dk : \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.(k \in Z)\end{array}\]

\[\begin{array}{l}1.9){\cos ^2}3x\cos 2x – {\cos ^2}x = 0\\ \Leftrightarrow \left( {1 + \cos 6x} \right)\cos 2x – 1 – \cos 2x = 0\\ \Leftrightarrow \cos 2x + \cos 6x\cos 2x – 1 – \cos 2x = 0\\ \Leftrightarrow \frac{{\cos 8x}}{2} + \frac{{\cos 4x}}{2} – 1 = 0\\ \Leftrightarrow 2{\cos ^2}4x + \cos 4x – 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos 4x = 1(n)\\\cos 4x = \frac{{ – 3}}{2}(l)\end{array} \right.\\ \Leftrightarrow 4x = k2\pi \\ \Leftrightarrow x = k\frac{\pi }{2}(k \in Z)\end{array}\]

\[\begin{array}{l}1.10){\cos ^4}x + {\sin ^4}x + \cos \left( {x – \frac{\pi }{4}} \right)\sin \left( {3x – \frac{\pi }{4}} \right) – \frac{3}{2} = 0\\ \Leftrightarrow  – \frac{1}{2} – \frac{1}{2}{\sin ^2}2x + \frac{1}{2}\sin \left( {4x – \frac{\pi }{2}} \right) + \frac{1}{2}\sin 2x = 0\\ \Leftrightarrow  – 1 – {\sin ^2}2x – \cos 4x + \sin 2x = 0\\ \Leftrightarrow {\sin ^2}2x – \sin 2x + 2{\cos ^2}2x = 0\\ \Leftrightarrow  – {\sin ^2}2x – \sin 2x + 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 1(n)\\\sin 2x =  – 2(l)\end{array} \right.\\ \Leftrightarrow x = \frac{\pi }{4} + k\pi (k \in Z)\end{array}\]

\[\begin{array}{l}1.11)\cot x = \tan x + \frac{{2\cos 4x}}{{\sin 2x}}(1)\\DK:\left\{ \begin{array}{l}x \ne k\pi \\x \ne \frac{\pi }{2} + k\pi \end{array} \right.(k \in Z)\\(1) \Leftrightarrow \frac{{\cos x}}{{\sin x}} = \frac{{\sin x}}{{\cos x}} + \frac{{\cos 4x}}{{\sin x\cos x}}\\ \Leftrightarrow {\cos ^2}x = {\sin ^2}x + \cos 4x\\ \Leftrightarrow \cos 2x = \cos 4x\\ \Leftrightarrow \left[ \begin{array}{l}2x = 4x + k2\pi \\2x =  – 4x + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x =  – k\pi \\x = k\frac{\pi }{3}\end{array} \right.(k \in Z)\\So dk: \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k\pi \\x = \frac{{2\pi }}{3} + k\pi \end{array} \right.(k \in Z)\end{array}\]

\[\begin{array}{l}1.12)\frac{{\sin 2x}}{{\cos x}} + \frac{{\cos 2x}}{{\sin x}} = \tan x – \cot x(1)\\DK:\left\{ \begin{array}{l}x \ne k\pi \\x \ne \frac{\pi }{2} + k\pi \end{array} \right.(k \in Z)\\(1) \Leftrightarrow \sin 2x\sin x + \cos 2x\cos x = {\sin ^2}x – {\cos ^2}x\\ \Leftrightarrow \cos (2x – x) =  – \cos 2x\\ \Leftrightarrow \cos x + \cos 2x = 0\\ \Leftrightarrow 2{\cos ^2}x + \cos x – 1 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos x =  – 1\\\cos x = \frac{1}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \pi  + k2\pi \\x =  \pm \frac{\pi }{3} + k2\pi \end{array} \right.(k \in Z)\\So DK: \Leftrightarrow x =  \pm \frac{\pi }{3} + k2\pi (k \in Z)\end{array}\]

\[\begin{array}{l}1.13)3\sin x + \cos 2x + \sin 2x = 4\sin x{\cos ^2}\frac{x}{2}\\ \Leftrightarrow 3\sin x + \cos 2x + \sin 2x = 2\sin x + \sin 2x\\ \Leftrightarrow \sin x + \cos 2x = 0\\ \Leftrightarrow  – 2{\sin ^2}x + \sin x + 1 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 1\\\sin x = \frac{{ – 1}}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k2\pi \\x = \frac{{ – \pi }}{6} + k2\pi \\x = \frac{{7\pi }}{6} + k2\pi \end{array} \right.(k \in Z)\end{array}\]

\[\begin{array}{l}1.14)4({\sin ^4}x + {\cos ^4}x) + \cos 4x + \sin 2x = 0\\ \Leftrightarrow 4 – 2{\sin ^2}2x + \cos 4x + \sin 2x = 0\\ \Leftrightarrow  – 4{\sin ^2}2x + \sin 2x + 5 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin 2x =  – 1(n)\\\sin 2x = \frac{5}{4}(l)\end{array} \right.\\ \Leftrightarrow 2x = \frac{{ – \pi }}{2} + k2\pi \\ \Leftrightarrow x = \frac{{ – \pi }}{4} + k\pi (k \in Z)\end{array}\]

\[\begin{array}{l}1.15)2{\cos ^2}x + 2\sqrt 3 \sin x\cos x + 1 = 3\left( {\sin x + \sqrt 3 \cos x} \right)\\ \Leftrightarrow 3{\cos ^2}x + 2\sqrt 3 \sin x\cos x + {\sin ^2}x = 3\left( {\sin x + \sqrt 3 \cos x} \right)\\ \Leftrightarrow {\left( {\sin x + \sqrt 3 \cos x} \right)^2} – 3\left( {\sin x + \sqrt 3 \cos x} \right) = 0\\ \Leftrightarrow \left( {\sin x + \sqrt 3 \cos x} \right)\left( {\sin x + \sqrt 3 \cos x – 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin \left( {x + \frac{\pi }{3}} \right) = 0(n)\\\sin \left( {x + \frac{\pi }{3}} \right) = 3(l)\end{array} \right.\\ \Leftrightarrow x =  – \frac{\pi }{3} + k\pi (k \in Z)\end{array}\]

\[\begin{array}{l}1.16)\sin 2x + \cos 2x + 3\sin x – \cos x – 2 = 0\\ \Leftrightarrow  – 2{\sin ^2}x + \sin 2x – 1 + 2\sin x + \sin x – \cos x = 0\\ \Leftrightarrow  – 2\sin x(\sin x – \cos x – 1) + (\sin x – \cos x – 1) = 0\\ \Leftrightarrow (\sin x – \cos x – 1)\left( { – 2\sin x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x – \cos x = 1\\\sin x = \frac{1}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{{3\pi }}{4} + k2\pi \\x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.\end{array}\]

\[\begin{array}{l}1.17)\sin 2x + 2\cos 2x = 1 + \sin x – 4\cos x\\ \Leftrightarrow 2\sin x\cos x + 4{\cos ^2}x – 3 – \sin x + 6\cos x – 2\cos x = 0\\ \Leftrightarrow 3\left( {2\cos x – 1} \right) + 2\cos x\left( {2\cos x – 1} \right) + \sin x\left( {2\cos x – 1} \right) = 0\\ \Leftrightarrow \left( {2\cos x – 1} \right)\left( {3 + 2\cos x + \sin x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = \frac{1}{2}(n)\\\sin x + 2\cos x =  – 3(l)\end{array} \right.\\ \Leftrightarrow x =  \pm \frac{\pi }{3} + k2\pi (k \in Z)\end{array}\]

\[\begin{array}{l}1.18)\cos 2x – {\tan ^2}x = \frac{{{{\cos }^2}x + {{\cos }^3}x – 1}}{{{{\cos }^2}x}}(1)\\DK:\cos x \ne 0 \Leftrightarrow x = \frac{\pi }{2} + k2\pi (k \in Z)\\(1)\cos 2x – {\tan ^2}x = 1 + \cos x – 1 – {\tan ^2}x\\ \Leftrightarrow \cos 2x = \cos x\\ \Leftrightarrow \left[ \begin{array}{l}2x = x + k2\pi \\2x =  – x + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = k\frac{{2\pi }}{3}\end{array} \right.(k \in Z)\end{array}\]

\[\begin{array}{l}1.19){\sin ^2}\left( {x + \frac{\pi }{3}} \right) + {\sin ^2}\left( {x + \frac{{2\pi }}{3}} \right) = \frac{{3 – \sin x}}{2}  \\ \Leftrightarrow \cos \left( {2x + \frac{{2\pi }}{3}} \right) + \cos \left( {2x + \frac{{4\pi }}{3}} \right) = \sin x – 1\\ \Leftrightarrow \cos \left( {2x + \frac{{2\pi }}{3}} \right) – \cos \left( {2x + \frac{\pi }{3}} \right) = \sin x – 1\\ \Leftrightarrow \frac{{ – 1}}{2}\cos 2x – \frac{{\sqrt 3 }}{2}\sin 2x – \frac{1}{2}\cos 2x + \frac{{\sqrt 3 }}{2}\sin 2x = \sin x – 1\\ \Leftrightarrow \cos 2x = 1 – \sin x\\ \Leftrightarrow  – 2{\sin ^2}x + \sin x = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\sin x = \frac{1}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.(k \in Z)\end{array}\]

\[\begin{array}{l}1.20)\cos 2x\left( {1 + \frac{1}{{\tan x\tan 2x + 1}}} \right) = {\cos ^2}x(1)\\DK\left\{ \begin{array}{l}\cos x \ne 0\\\cos 2x \ne 0\\\tan x\tan 2x \ne  – 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{2} + k\pi \\x \ne \frac{\pi }{4} + k\frac{\pi }{2}\\\tan x \ne \cot \left( { – 2x} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{2} + k\pi \\x \ne \frac{\pi }{4} + k\frac{\pi }{2}\\x \ne  – \frac{\pi }{2} – k\pi \end{array} \right.(k \in Z)\\(1) \Leftrightarrow \cos 2x\left( {1 + \cos 2x} \right) = {\cos ^2}x\\ \Leftrightarrow \cos 2x + {\cos ^2}2x = {\cos ^2}x\\ \Leftrightarrow \cos 2x + 2{\cos ^2}2x – 1 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x =  – 1\\\cos 2x = \frac{1}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k\pi \\x =  \pm \frac{\pi }{6} + k\pi \end{array} \right.(k \in Z)\\So dk; \Leftrightarrow x =  \pm \frac{\pi }{6} + k\pi (k \in Z)\end{array}\]

\[\begin{array}{l}1.21)\left( {1 – \tan x} \right)\left( {1 + \sin 2x} \right) = 1 + \tan x(1)\\DK:\cos x \ne 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi \\(1) \Leftrightarrow 1 – \tan x + \sin 2x – \tan x\sin 2x = 1 + \tan x\\ \Leftrightarrow  – \tan x – {\sin ^2}x + \sin x\cos x = 0\\ \Leftrightarrow \sin x\left( {\frac{1}{{\cos x}} + \sin x – \cos x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\sin x\cos x – {\cos ^2}x + 1 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\\sin x\left( {\sin x + \cos x} \right) = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x =  – \frac{\pi }{4} + k\pi \end{array} \right.(k \in Z)\end{array}\]

\[\begin{array}{l}1.22)\frac{{\sqrt 3 }}{{{{\cos }^2}x}} + \frac{{4 + 2\sin 2x}}{{\sin 2x}} – 2\sqrt 3  = 2\left( {\cot x + 1} \right)(1)\\DK:\sin 2x \ne 0 \Leftrightarrow x \ne k\frac{\pi }{2}(k \in Z)\\(1) \Leftrightarrow 2\sqrt 3 \sin x + 4\cos x + 2\sin 2x\cos x – 2\sqrt 3 \sin 2x\cos x = 2\sin 2x\cos x + 2\cot x\sin 2x\cos x\\ \Leftrightarrow 2\sqrt 3 \sin x + 4\cos x – 2\sqrt 3 \sin 2x\cos x = 4{\cos ^3}x\\ \Leftrightarrow 2\sqrt 3 \sin x\left( {1 – 2{{\cos }^2}x} \right) + 4\cos x\left( {1 – {{\cos }^2}x} \right) = 0\\ \Leftrightarrow \sqrt 3 \sin x\cos 2x – 2\cos x{\sin ^2}x = 0\\ \Leftrightarrow \sin x\left( {\sqrt 3 \cos 2x – \sin 2x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\sqrt 3 \cos 2x – \sin 2x = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\\cos \left( {2x + \frac{\pi }{6}} \right) = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{\pi }{6} + k\frac{\pi }{2}\end{array} \right.(k \in Z)\\So dk: \Leftrightarrow x = \frac{\pi }{6} + k\frac{\pi }{2}(k \in Z)\end{array}\]

Share

Written by:

le chanduc

89 Posts

View All Posts
Follow Me :
Theo dõi
Thông báo của
guest

0 Comments
Phản hồi nội tuyến
Xem tất cả bình luận
0
Mình rất thích suy nghĩ của bạn, bình luận bên dưới nhax

Bạn đã đăng kí thành công, cảm ơn bạn nha

Có một chút lỗi, bạn vui lòng làm lại nha

EDUCATION will use the information you provide on this form to be in touch with you and to provide updates and marketing.